Abstract

ABSTRACTWe compared the photoluminescence (PL) mappings of epitaxial wafers for light emitting diodes (LEDs) by using a He-Cd laser (325 nm line) and a laser diode (LD) with peak wavelength of 405 nm as excitation sources and the electroluminescence (EL) mappings of the same wafers. The samples were epitaxial wafers for blue and green InGaN-LEDs obtained in commercial. The wafers were fabricated into LEDs with a Ni/Au transparent p-type electrode and a Ti/Ni n-type electrode after the PL mapping measurements. The He-Cd laser performed the band to band excitation of (Al)GaN cladding and contact layers (non-selective excitation). Because the photo-excited carriers at the cladding and contact layers diffused into the multi-quantum wells (MQWs) and contributed the PL emission by radiative recombination in the MQWs, the PL mapping under the influence of the (Al)GaN cladding and contact layers was obtained. On the other hand, the LD (405 nm) enable us to obtain the PL mapping under selective excitation of the MQWs without the influence of the cladding and contact layers. The PL mapping measurements were carried out at room temperature (RT) at the excitation power density of 310 W/cm2 under non-selective excitation (by the He-Cd laser) and at that of 11.5 W/cm2 under selective excitation (by the LD). The EL mapping was measured at a forward current of 20 mA at RT. The area of the wafer with high EL intensity was coincident with the area with the high PL intensity under selective excitation. Therefore, the PL mapping measurement under selective excitation of MQWs is recommended to characterize the epitaxial wafers and to estimate the device performance of InGaN-LEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.