Abstract
Purpose The purpose of this study is to develop a green corrosion inhibitor (GCI) from the parthenium hysterophorus (PHS) leaf and identifying its efficiency in corrosion inhibition of AZ31 alloy. Design/methodology/approach GCI from PHS leaf is extracted with the aid of Soxhlet apparatus and analysed through Fourier transform infrared spectroscopy (FTIR) and phytochemical tests to identify the functional groups and chemical compounds present. Inhibition efficiency (IE) of PHS extract is identified through polarization analysis and immersion tests in which concentration of PHS extract (0–300 ppm) and temperature (303–353 K) is varied. Findings Maximum IE of 84% is exhibited by the prepared PHS extract at a concentration of 250 ppm at 303 K and further addition diminishes IE. The developed GCI is found effective in room temperature (303 K) as it exhibits lower IE when temperature increased. Both physical and chemical absorption mechanisms were identified for PHS extract over AZ31 surface, whereas FTIR and SEM analysis confirms the development of passivation layer. Originality/value Development of GCI from the leaf of a weed (PHS) that disturbs the ecosystem and identifying its efficiency in preventing corrosion of AZ31 under saline environment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have