Abstract

Thin nonisothermal liquid film flowing under action of gravity force and co-current gas flow, which create the tangential force on the gas-liquid interface, in an inclined minichannel is considered. 3D time dependant mathematical model has been developed. Effects of surface tension, temperature dependent viscosity and thermocapillarity are taken into account. The effect of gravity as well as the effect of gas speed has been studied to define main features of the film dynamics. In calculations vector of gravitational acceleration is oriented along the flow and is equal to the normal Earth gravity and Lunar gravity. Our investigations have shown that gravity has a significant effect on the film deformations. At the lower gravity conditions 3D liquid film pattern changes noticeably in spanwise direction and a middle stream between two main lateral waves appears. Also speed of film deformation is higher and stabilization time is longer. Variation of gas Reynolds number from 543 to 2000 does not change noticeably film pattern at normal gravity. At lower gravity conditions increasing of gas Reynolds number decreases significantly the width of the thermocapillary deformations and leads to a film stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.