Abstract

In our previous investigations the formation of liquid bump of locally heated laminar liquid film with co-current gas flow was obtained [1,2]. The evaporation of liquid was left out of account. Heat transfer to the gas phase was approximately specified by a constant Biot number [2,3]. The aim of this work is an investigation of the evaporation effect, the hydrodynamics and the heat transfer of liquid film flow in a channel 0.2–1 mm height. The 2-D model of locally heated liquid film moving under gravity and the action of co-current gas flow with low viscosity in a channel are considered. The channel can be inclined at an angle with respect to horizon. It is supposed that the height of the channel is much less than its width. Surface tension is assumed to depend on temperature. The velocity profiles for gas and liquid regions are found from problem of joint motion of isothermal non-deformable liquid film and gas flow. Using the findings the joint solution of heat transfer and diffusion problem with corresponding boundary condition is calculated. Having the temperature field in the whole of liquid and gas flow region we find a local heat transfer coefficient on the gas-liquid interface and Biot number as a function of flow parameters and spatial variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call