Abstract

The present study is focused on the investigation of gravity effect on thermocapillary deformations in a film flowing under action of co-current gas flow, which creates the tangential force on the gas–liquid interface. The influence of local heating intensity on the heater at a substrate is also investigated. Effects of surface tension, temperature dependent viscosity and thermocapillarity are taken into account. Investigations have shown that gravity has a significant effect on the film deformations and pattern. Decreasing of gravity level leads to a flow destabilization. 3D liquid film pattern noticeably changes in spanwise direction. Increasing of heat flux leads to increasing of liquid film deformations. Dependence of film thinning on heat flux is strongly nonlinear. The most dangerous deformations (regions of minimum film thickness with possible disruption of liquid) take place behind the downstream edge of the heater at any gravity conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.