Abstract

The synthesis of controllable hollow graphitic architectures can engender revolutionary changes in nanotechnology. Here, we present the synthesis, processing, and possible applications of low aspect ratio hollow graphitic nanoscale architectures that can be precisely engineered into morphologies of (1) continuous carbon nanocups, (2) branched carbon nanocups, and (3) carbon nanotubes–carbon nanocups hybrid films. These complex graphitic nanocup-architectures could be fabricated by using a highly designed short anodized alumina oxide nanochannels, followed by a thermal chemical vapor deposition of carbon. The highly porous film of nanocups is mechanically flexible, highly conductive, and optically transparent, making the film attractive for various applications such as multifunctional and high-performance electrodes for energy storage devices, nanoscale containers for nanogram quantities of materials, and nanometrology.

Highlights

  • Diverse graphitic nanostructures have been actively researched for applications in energy storage devices, bio/chemical sensors, drug delivery, etc. [1,2,3,4,5,6,7,8,9,10,11,12,13,14]

  • While significant progress has been made on both developing large-scale synthesis and unveiling their exceptional properties, there remain challenges in controlling morphology and proportion of individual nanoscale units, which limits their use in down-to-earth applications [15,16,17,18,19,20,21,22]

  • Low aspect ratio graphitic nanoscale architecture based on CNC film exhibits high potential in various applications due to excellent features such as high transparency, flexibility, and large specific surface area

Read more

Summary

Introduction

Diverse graphitic nanostructures (e.g., nanographite, carbon nanotubes, carbyne, and graphene) have been actively researched for applications in energy storage devices, bio/chemical sensors, drug delivery, etc. [1,2,3,4,5,6,7,8,9,10,11,12,13,14]. By depositing carbon materials on this AAO template, low aspect ratio graphitic nanoscale cup structures can be fabricated, resulting in a film ofNaunnomiaftoerriamls 2l0y19a, 9r,rxaFnOgRePdEEcRaRrEbVoIEnWnanocups (see Figure 1). ScTephsaes,ruaennnidqt.utheSehcatahrpbicoeknncneosansntoorfsottrlhuiesctnnuaronetodoccunuplpsysfliailrmme ited to the dimensioncsobntuintuaolusoslyinatnedrmunsiofofrfmalbyriccoantniencgtebdralinkechaesthoinn ftihlme boof thtoomneyocfotmhbes.naTnheocfuilmpsoofrcgornonwecitendg vertically aligned CNnaTnsocinupssideexhtihbietschuigphssbpyeceifmic psulrofaycienagreaa tahnedremnaablleCsVfaDst eplreoctcroensst.raTnhsfiesr c[4o3n,4n4]e.cFtuerdthneramnoorce,ups film is an ideal teimt ips lamteechtoanbicualillyd falemxibuleltiacnodmoppoticnaellnyt tsryansstpeamre,nat.s Sohtahpeer cnoanntroolmisatneortiaolns,lymliomleitceudletos,toher polymers dimensions and in terms of fabricating branches on the bottom of the nanocups or growing can be easvileyrtiicnaslleyrtaelidgnaenddCeNvTesnilnysiddeistthreibcuutpesdboyveemrptlhoeyincug pasth[2er7m,3a6l –C3V8D,45p,r4o6c]e.ss. This connected Figurnea1noschuopswfsilma sicshaenmidaetailc toemf vpalartieotuosbcuailrdboanmnualtnicoomcupponse(nCt NsyCst)emar, cahsitoethcetrurneasnoamnadtetrhiaelsi,r potential applicatiomnso.lecCulNes,Cordpioalymmeetres rcaannbde ealesinlygitnhsecrtaend abned ecvoennltyrodlisletrdibuttoedoopvteirmthiezceupths [e27f,u36n–c38ti,4o5n,46o].f the CNC film. (3) CNWTes–reCvNiewC thhryeberCidNCst-rbuascetdurnea.noTshtreuscetusretrs:u(c1t)utrheins aCrNeCufsielmfu, l(2f)obrraanpcphelidcaCtNioCnsfiltmh,aatnrdeq(3u)ire optical transparenCcNy,Tms–CeNchCanhyicbarildflsetxruibctiulirtey. ,Tahnedsessttrruuccttuurreaslacroenutsienfuulityfo.rInaptphliicsatpioanpsetrh, awt erecqouvireero(p1t)icflalexible and transparenttrasnusppaerrecnacpy,amcietcohrasn,i(c2al) fhleixgihbi-lpitye,rfaonrdmstarnuccteursaul pcoenrtcianpuiatyc.itIonrtsh,isanpdap(e3r,) wCeNcCovceron(1t)afilnexeirblseystem that can accomamndodtraatnespnaarennot psaurpteircclaepsa,cpitoorlsy, m(2e) rhsi,gohr-pleirqfourimdadncreopsuleptesr.capacitors, and (3) CNC container system that can accommodate nanoparticles, polymers, or liquid droplets

Fabrication and Modification of Graphitic Nanoscale Architectures
Branched CNC for Electrodes of Flexible and Transparent Supercapacitors
CNTs–CNC Hybrid Structure Electrodes for High Power Supercapacitors
Findings
Conclusions and Future Perspectives
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call