Abstract

The content of gasoline fraction in oil samples is not only an important indicator of oil quality, but also an indispensable fundamental data for oil refining and processing. Before its determination, efficient preconcentration and separation of gasoline fractions from complicated matrices is essential. In this work, a thin layer of graphene (G) was deposited onto oriented ZnO nanorods (ZNRs) as a SPME coating. By this approach, the surface area of G was greatly enhanced by the aligned ZNRs, and the surface polarity of ZNRs was changed from polar to less polar, which were both beneficial for the extraction of gasoline fractions. In addition, the ZNRs were well protected by the mechanically and chemically stable G, making the coating highly durable for use. With headspace SPME (HS-SPME) mode, the G/ZNRs coating can effectively extract gasoline fractions from various oil samples, whose extraction efficiency achieved 1.5-5.4 and 2.1-8.2 times higher than those of a G and commercial 7-μm PDMS coating respectively. Coupled with GC-FID, the developed method is sensitive, simple, cost effective and easily accessible for the analysis of gasoline fractions. Moreover, the method is also feasible for the detection of gasoline markers in simulated oil-polluted water, which provides an option for the monitoring of oil spill accident.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.