Abstract
We demonstrate the application of graphene as collector material in internal photoemission (IPE) spectroscopy, which enables direct observation of both electron and hole injections at a Si/Al2O3 interface and overcomes the long-standing difficulty of detecting holes in IPE measurements. The observed electron and hole barrier heights are 3.5 ± 0.1 eV and 4.1 ± 0.1 eV, respectively. Thus, the bandgap of Al2O3 can be deduced to be 6.5 ± 0.2 eV, in good agreement with the value obtained by ellipsometry analysis. Our modeling effort reveals that, by using graphene, the carrier injection from the emitter is significantly enhanced and the contribution from the collector electrode is minimal.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have