Abstract

This letter reports on nucleation and growth of graphene foliates protruding from the sidewalls of aligned carbon nanotubes (CNTs) and their impact on the electrochemical double-layer capacitance. Arrays of CNTs were grown for different time intervals, resulting in an increasing density of graphene foliates with deposition time. The samples were characterized using electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. Both low and high frequency capacitance increased with increasing foliate density. A microstructural classification is proposed to explain the role of graphene edges, three-dimensional organization, and other features of hybrid carbon systems on their electrochemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.