Abstract

The effective properties of metamaterials are tailored through the design of their internal structures. According to their main building block, the family of porous three-dimensional metamaterials is divided into truss-, plate- and shell-lattices. The exploration of their full design-space is hampered in practice by a lack of a systematic method to represent their topologies. Here, we demonstrate for the first time that graph models provide an effective representation of shell-lattices. This new graph representation is then leveraged to obtain deep learning-based structure–property models. Using finite element simulations, the stiffness and heat conductivity tensors are established for more than 40,000 microstructural configurations. We find that a modified crystal graph convolutional neural network model provides an accurate description of the structure–property relations. We anticipate the proposed graph-based modeling framework to be applicable to any man-made periodic microstructure, thereby enabling the design and discovery of new materials exhibiting exceptional mechanical, thermal, electrical or magnetic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.