Abstract

Combinatorial approaches for targeted discovery of new materials require rapid screening systems to evaluate large numbers of new material compositions. High-throughput combinatorial materials discovery is a capital-intensive undertaking requiring sophisticated robotic sample preparation and rapid screening assays. A distributed approach to combinatorial materials discovery can achieve similar goals by increasing the breadth of participation and reducing the size of the capital investment. The discovery of new photoactive materials for solar fuels production demands a screening device to probe materials for electrochemical current production upon irradiation with visible light. We have developed a system that uses an array of pulsed light-emitting diodes (LEDs) synchronized with a two-electrode potentiostat that can measure the photoelectrochemical responses of combinatorial sample arrays deposited on conducting glass plates. Compared to raster scanning methods, this LED system trades spatial resolution for a substantial reduction in scan time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call