Abstract

Accurate and efficient predictions of protein structures play an important role in understanding their functions. Iterative Threading Assembly Refinement (I-TASSER) is one of the most successful and widely used protein structure prediction methods in the recent community-wide CASP experiments. Yet, the computational efficiency of I-TASSER is one of the limiting factors that prevent its application for large-scale structure modeling. We present I-TASSER for Graphics Processing Units (GPU-I-TASSER), a GPU accelerated I-TASSER protein structure prediction tool for fast and accurate protein structure prediction. Our implementation is based on OpenACC parallelization of the replica-exchange Monte Carlo simulations to enhance the speed of I-TASSER by extending its capabilities to the GPU architecture. On a benchmark dataset of 71 protein structures, GPU-I-TASSER achieves on average a 10× speedup with comparable structure prediction accuracy compared to the CPU version of the I-TASSER. The complete source code for GPU-I-TASSER can be downloaded and used without restriction from https://zhanggroup.org/GPU-I-TASSER/. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.