Abstract

Gonadotropin-releasing hormone (GnRH, previously called leutinizing hormone-releasing hormone, LHRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Recently, genes encoding two other GnRH forms have been discovered. Here we present a phylogenetic analysis that shows that the GnRH genes fall naturally into three distinct branches, each of which shares not only a molecular signature but also characteristic expression sites in the brain. The GnRH genes appear to have arisen through gene duplication from a single ancestral GnRH whose origin predates vertebrates. Several lines of data support this suggestion, including the fact that all three genes share an identical exonic structure. The existence of three distinct GnRH families suggests a new, natural nomenclature for the genes, and in addition, we present a logical proposal for naming the peptide sequences. The two recently discovered GnRH genes are unusual because they encode decapeptides that are identical in all the species in which they have been found. The control of gene expression also differs among the three gene families as might be expected since they have had separate evolutionary trajectories for perhaps 500 million years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call