Abstract
BackgroundKisspeptins (Kiss) are prime players in the control of reproductive function through their regulation of gonadotropin-releasing hormone (GnRH) expression in the brain. The experimental scombroid fish, chub mackerel (Scomber japonicus) expresses two kiss (kiss1 and kiss2) and three gnrh (gnrh1, gnrh2, and gnrh3) forms in the brain. In the present study, we analyzed expression changes of kiss and gnrh mRNAs in the brain and corresponding GnRH peptides in the brain and pituitary during final ovarian maturation (FOM) and ovulation.MethodsFemale fish possessing late vitellogenic oocytes were injected with GnRH analogue to induce FOM and ovulation. Fish were observed for daily spawning activities and sampled one week post-injection at germinal vesicle migration (GVM), oocyte hydration, ovulation, and post-ovulatory time periods. Changes in relative mRNA levels of kiss and gnrh forms in the brain were determined using quantitative real-time PCR. Changes in GnRH peptides in the brain and pituitary were analyzed using time-resolved fluoroimmunoassay.ResultsBoth kiss1 and kiss2 mRNA levels in the brain were low at late vitellogenic stage and increased significantly during the GVM period. However, kiss1 mRNA levels decreased during oocyte hydration before increasing again at ovulatory and post-ovulatory periods. In contrast, kiss2 mRNA levels decreased at ovulatory and post-ovulatory periods. Levels of gnrh1 mRNA in the brain increased only during post-ovulatory period. However, levels of gnrh2 and gnrh3 mRNAs were elevated during GVM and then, decreased during oocyte hydration before increasing again at ovulatory period. During post-ovulatory period, both gnrh2 and gnrh3 mRNA levels declined. Peptide levels of all three GnRH forms in the brain were elevated during GVM and oocyte hydration; their levels were significantly lower during late vitellogenic, ovulatory, and post-ovulatory periods. In contrast, pituitary GnRH peptide levels did not show any significant fluctuations, with the GnRH1 peptide levels being many-fold higher than the GnRH2 and GnRH3 forms.ConclusionThe results indicate increased expression of multiple Kiss and GnRH forms in the brain and suggest their possible involvement in the regulation of FOM and ovulation in captive female chub mackerel.
Highlights
Kisspeptins (Kiss) are prime players in the control of reproductive function through their regulation of gonadotropin-releasing hormone (GnRH) expression in the brain
Based on the previous reports demonstrating significant decline in the plasma concentration of GnRH agonist on day 5 after intramuscular injection with the GnRH agonist suspended in coconut oil in the Plaice [22,23], results of the present study likely indicate an endogenous profile of female chub mackerel undergoing final ovarian maturation (FOM) and ovulation in captivity
Levels of all three gnrh mRNAs and their peptides in the brain were found to fluctuate during FOM and ovulatory periods
Summary
Kisspeptins (Kiss) are prime players in the control of reproductive function through their regulation of gonadotropin-releasing hormone (GnRH) expression in the brain. In vertebrates, including teleosts, reproductive processes are regulated by the precise coordination of neuroendocrine hormones acting through the brain-pituitary-gonad (BPG) axis. A neurohormone, gonadotropin-releasing hormone (GnRH), plays a central role by stimulating the synthesis and release of the pituitary gonadotropins (GtHs). These pituitary GtHs, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), act on the gonads to stimulate steroidogenesis, which is responsible for progression of ovarian growth and maturation [1,2]. Kisspeptins primarily act at the level of GnRH neurons, which express kisspeptin receptor (GPR54 or Kiss1r) [7,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.