Abstract

ABSTRACTWe present gold (Au) and silver (Ag) nanoparticles (NPs) could be used not only for stimuli-responsive optical sensors but also for the quantification of radical compounds when these nanoparticles are suitably combined with polymeric materials. When Au NPs are assembled 2-dimensionally on the surface of hydrogel NPs which respond to temperatures, the hybrid NPs displayed thermoreversible multiple color switching. Accordingly, optical bandwidths of the hybrid NPs are reversibly changed with temperatures: with hybrid NPs assembled with 51 nm Au NPs, prominent optical signals are recorded at 900 nm at 50 °C while most of extinction signals are shown below 600 nm at room temperatures. In addition, we demonstrate the modification of Ag NPs’ surfaces (nanocubes and nanospheres) with polyelectrolytes (either positive or negative) could extend the quantifiable detection ranges of radical compounds. Through the surface modification of Ag NPs, the polyelectrolytes protect the Ag NPs by probably either retarding (forming diffusion barriers) or preventing (blocking/entrapping/scavenging) the arrival of radicals to Ag NPs or both. The roles of the polyelectrolytes are demonstrated by using radical compounds produced from tetrahydrofuran and H2O2. From the results, we could obtain calibration curves for the wide-range quantification of radical compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call