Abstract

Schistosomiasis seriously affects human health in tropical regions. Its prevention is more important than treatment, raising the need for effective control methods. Recently, the role of nanomaterials in medical science has been growing. The present study aimed to evaluate the potential effects of silver (Ag) and gold (Au) nanoparticles (NPs) on Biomphalaria alexandrina snails and Schistosoma mansoni cercariae in vitro and to assess their effects on the infectivity of cercariae in vivo. The in vitro study proved that Ag and Au NPs were effective in killing B. alexandrina snails, with 30μg/ml Ag and 160μg/ml Au causing 100% mortality. The LC50 of 9.68μg/ml for Ag NPs and 133.7μg/ml for Au NPs prevented snail infection with S. mansoni miracidia. Furthermore, Ag NPs at 50μg/ml and Au NPs at 100μg/ml increased the mortality of S. mansoni cercariae in a dose- and time-dependent manner, reaching 100% mortality after 1h. The in vivo study found that Ag NPs prevented the occurrence of infection when cercariae were treated before the infection by either the tail immersion (TI) or subcutaneous (SC) route, as proven by parasitological parameters and by the absence of granuloma formation in hepatic tissue. Meanwhile, infection of mice by untreated cercariae followed by treatment with NPs 1h post-infection (PI) caused a decrease in egg count/g intestine and egg count/g liver in the TI-infected group only. The oogram patterns and granuloma formation results were similar between infection control and the SC-infected group. On the other hand, Au NPs led to a decrease in total worm burden (TWB) in all tested groups, with a decrease in egg count/g intestine and egg count/g liver in TI-infected groups with either pre-treated or post-treated cercariae, in contrast to SC-infected groups. However, the oogram patterns and granuloma formation showed similar results to infection control. Ag and Au NPs have potential as molluscicides and cercaricides in vitro and can prevent or modulate the infectivity of cercariae in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call