Abstract

Nanoparticles are potential threats to human health and the environment; however, their medical applications as drug carriers targeting cancer cells bring hope to contemporary cancer therapy. As a model drug carrier, gold nanoparticles (GNPs) have been investigated extensively for in vivo toxicity. The effect of GNPs on the immune system, however, has rarely been examined. Antibody-secreting cells were treated with GNPs with diameters ranging from 2 to 50 nm. The GNPs enhanced IgG secretion in a size-dependent manner, with a peak of efficacy at 10 nm. The immune-stimulatory effect reached a maximum at 12 h after treatment but returned to control levels 24 h after treatment. This enhancing effect was validated ex vivo using B-cells isolated from mouse spleen. Evidence from RT-PCR and western blot experiments indicates that GNP-treatment upregulated B-lymphocyte-induced maturation protein 1 (blimp1) and downregulated paired box 5 (pax5). Immunostaining for blimp1 and pax5 in B-cells confirmed that the GNPs stimulated IgG secretion through the blimp1/pax5 pathway. The immunization of mice using peptide-conjugated GNPs indicated that the GNPs were capable of enhancing humoral immunity in a size-dependent manner. This effect was consistent with the bio-distribution of the GNPs in mouse spleen. In conclusion, in vitro, ex vivo, and in vivo evidence supports our hypothesis that GNPs enhance humoral immunity in mouse. The effect on the immune system should be taken into account if nanoparticles are used as carriers for drug delivery. In addition to their toxicity, the immune-stimulatory activity of nanoparticles could play an important role in human health and could have an environmental impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.