Abstract
Mobile, pervasive computing environments respond to users’ requirements by providing access to and composition of various services over networked devices. In such an environment, service composition needs to satisfy a request’s goal, and be mobile-aware even throughout service discovery and service execution. A composite service also needs to be adaptable to cope with the environment’s dynamic network topology. Existing composition solutions employ goal-oriented planning to provide flexible composition, and assign service providers at runtime, to avoid composition failure. However, these solutions have limited support for complex service flows and composite service adaptation. This paper proposes a self-organizing, goal-driven service model for task resolution and execution in mobile pervasive environments. In particular, it proposes a decentralized heuristic planning algorithm based on backward-chaining to support flexible service discovery. Further, we introduce an adaptation architecture that allows execution paths to dynamically adapt, which reduces failures, and lessens re-execution effort for failure recovery. Simulation results show the suitability of the proposed mechanism in pervasive computing environments where providers are mobile, and it is uncertain what services are available. Our evaluation additionally reveals the model’s limits with regard to network dynamism and resource constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.