Abstract

Glycoborinine (GB), a natural carbazole alkaloid isolated from Glycosmis pentaphylla, has been shown to be a potential molecule against cancer cells. In this study, the cell-signaling pathway of its anti-tumor activity was investigated. MTT assay result showed that GB inhibited HepG2 cell proliferation in a dose- and time-dependent manner and 50% inhibiting concentration (IC50) of GB-induced cell death was 39.7 μM for a period of 48 h. GB-induced HepG2 apoptosis was confirmed by Hochest 33258 staining and PI staining. The level of reactive oxygen species (ROS) was measured with H2DCF-DA staining and the change of mitochondrial membrane potential (△Ψm) was analyzed with tetrechloro-tetraethylbenzimidazolcarbocyanine iodide (JC-1) probe. Results showed that GB at 12.5, 25, and 50 μM promoted ROS production. GB induced HepG2 apoptosis through a mitochondrial apoptotic pathway, which was demonstrated by GB-induced increase in the ratio of Bax/Bcl-2, cytochrome C release, the ratio of cleaved caspase-3/procaspase-3, and the ratio of cleaved poly ADP-ribose polymerase (cleaved PARP)/poly ADP-ribose polymerase (PARP). To summarize, this study demonstrated that GB could induce HepG2 apoptosis through the mitochondrial-dependent pathway, which might provide a promising approach to cure liver cancer with GB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call