Abstract

The glycerol conversion in the presence of carbon dioxide was investigated on a Ni/γ-Al2O3 catalyst. The catalyst was characterized by XRD, TPR, BET, XPS, H2-TPD, DRIFTS and Raman. A catalyst preparation method using ethylene glycol and a reduction passivation procedure provided an active catalyst. For the different catalytic runs in a batch reactor, a higher formation of hydrocarbons, alcohols, ketones, and furans was observed when the mass of catalyst was increased. For temperatures below 200°C, both glycerol and CO2 were converted, suggesting a potential route for glycerol valorization and CO2 sequestration, with the consequent production of oxirane, alcohols, ketones and carboxylic acids. For higher temperatures, there was the formation of a wide range of low yield products, with higher yields to ketones, alcohols and esters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call