Abstract

The dehydrogenation of isobutane to produce isobutene coupled with reverse water gas shift (RWGS) reaction in the presence of carbon dioxide was investigated over a NiO/γ-Al2O3 catalyst. The results illustrated that the coupling dehydrogenation of isobutane in carbon dioxide over NiO/γ-Al2O3 catalyst is effective, and the NiO/Al2O3 catalyst was modified with deposited carbon by impregnation of alumina with an aqueous solution of Ni(H2NCH2CH2NH2)x(NO3)2. Carbon modification can decrease the total acidity of the NiO/γ-Al2O3 catalyst and enhance the dispersion of NiO active phase. Furthermore, carbon has low acidity and anti-coking performance, so the carbon modification is effective in suppressing the coke formation and side reactions occurrence. Therefore, the catalyst stability and the isobutene selectivity are improved significantly by the carbon modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.