Abstract

In this article, we investigate the global stability of the wave patterns with the superposition of viscous contact wave and rarefaction wave for the one-dimensional compressible Navier-Stokes equations with a free boundary. It is shown that for the ideal polytropic gas, the superposition of the viscous contact wave with rarefaction wave is nonlinearly stable for the free boundary problem under the large initial perturbations for any γ > 1 with γ being the adiabatic exponent provided that the wave strength is suitably small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.