Abstract

This paper is devoted to the study of the nonlinear stability of the composite wave consisting of a rarefaction wave and a viscous contact discontinuity wave of the non‐isentropic Navier–Stokes–Poisson system with free boundary. We first construct the composite wave through the quasineutral Euler equations and then prove that the composite wave is time asymptotically stable under small perturbations for the corresponding initial‐boundary value problem of the non‐isentropic Navier–Stokes–Poisson system. Only the strength of the viscous contact wave is required to be small. However, the strength of the rarefaction wave can be arbitrarily large. In our analysis, the domain decomposition plays an important role in obtaining the zero‐order energy estimates. By introducing this technique, we successfully overcome the difficulty caused by the critical terms involved with the linear term, which does not satisfy the quasineural assumption for the composite wave. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call