Abstract

We investigate the nonlinear stability of the superposition of a viscous contact wave and two rarefaction waves for a one-dimensional (1D) bipolar Vlasov--Poisson--Boltzmann (VPB) system, which can be used to describe the transportation of charged particles under the additional electrostatic potential force. Based on a new micro-macro type of decomposition around the local Maxwellian related to the bipolar VPB system in the previous work [H.-L. Li, Y. Wang, T. Yang, and M.-Y. Zhong, Arch. Ration. Mech. Anal., 228 (2018), pp. 39--127], we prove that the superposition of a viscous contact wave and two rarefaction waves is time-asymptotically stable to the 1D bipolar VPB system under some smallness conditions on the initial perturbations and wave strength, which implies that this typical superposition wave pattern is nonlinearly stable under the combined effects of the binary collisions, the electrostatic potential force, and the mutual interactions of different charged particles. This is the first result about the nonlinear stability of the combination of two different wave patterns for the VPB system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.