Abstract

In this paper, we consider the global existence and uniqueness of the classical (weak) solution for the 2D or 3D compressible Navier–Stokes equations with a density-dependent viscosity coefficient (λ = λ(ρ)). Initial data and solutions are only small in the energy-norm. We also give a description of the large time behavior of the solution. Then, we study the propagation of singularities in solutions. We obtain that if there is a vacuum domain initially, then the vacuum domain will exist for all time, and vanishes as time goes to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.