Abstract

In this paper, we prove the global existence of classical solutions to the three-dimensional (3D) compressible Navier–Stokes equations with a density-dependent viscosity coefficient (λ=λ(ρ)) provided the initial data is of small energy. This in particular implies that the solutions may have large oscillations and contain vacuum states. As a result of the uniform estimates, the large-time behavior of the solution is also studied. The result obtained generalizes those results in Zhang (2011) [39] and Huang et al. (2012) [17] where the non-vacuum initial data and the constant viscosity coefficients are considered, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.