Abstract
This paper is concerned with global strong solutions of the isentropic compressible Navier–Stokes equations with density-dependent viscosity coefficient in one-dimensional bounded intervals. Precisely, the viscosity coefficient μ = μ ( ρ ) and the pressure P is proportional to ρ γ with γ > 1 . The important point in this paper is that the initial density may vanish in an open subset. We also show that the strong solution obtained above is unique provided that the initial data satisfies additional regularity and a compatible condition. Compared with former results obtained by Hyunseok Kim in [H. Kim, Global existence of strong solutions of the Navier–Stokes equations for one-dimensional isentropic compressible fluids, available at: http://com2mac.postech.ac.kr/papers/2001/01-38.pdf], we deal with density-dependent viscosity coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.