Abstract

We establish the global Morrey regularity and continuity results for solutions to nonlinear elliptic equations over bounded nonsmooth domains. The novelty of our contribution is that the principal part of the operator is assumed to be merely asymptotically regular with respect to the gradient of a solution, which means that it behaves like the p -Laplacian operator for large values, while the lower order terms satisfy controlled growth conditions with respect to variables modeled by the functions from Morrey spaces. Our results extend to a larger class of degenerate and singular elliptic equations from by now regular problems in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.