Abstract
Many problems in image processing can be posed as non-convex minimization problems. For certain classes of non-convex problems involving scalar-valued functions, it is possible to recast the problem in a convex form using a ``functional lifting'' technique. In this paper, we present a variational functional lifting technique that can be viewed as a generalization of previous works by Pock et. al and Ishikawa. We then generalize this technique to the case of minimization over vector-valued problems, and discuss a condition which allows us to determine when the solution to the convex problem corresponds to a global minimizer. This generalization allows functional lifting to be applied to a wider range of problems then previously considered. Finally, we present a numerical method for solving the convexified problems, and apply the technique to find global minimizers for optical flow image registration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.