Abstract

Nowadays the great interest of researchers in the problem of processing the interrelated data arrays including images is retained. In the modern theory of machine learning, the problem of image processing is often viewed as a problem in the field of graph models. Image pixels constitute a unique array of interrelated elements. The interrelations between array elements are represented by an adjacency graph. The problem of image processing is often solved by minimizing Gibbs energy associated with corresponding adjacency graphs. The crucial disadvantage of Gibbs approach is that it requires empirical specifying of appropriate energy functions on cliques. In the present work, we investigate a simpler, but not less effective model, which is an expansion of the Markov chain theory. Our approach to image processing is based on the idea of replacing the arbitrary adjacency graphs by tree-like (acyclic in general) ones and linearly combining of acyclic Markov models in order to get the best quality of restoration of hidden classes. In this work, we propose algorithms for tuning combination of acyclic adjacency graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.