Abstract
We study the existence theory for the Cucker–Smale–Navier–Stokes (in short, CS–NS) equations in two dimensions. The CS–NS equations consist of Cucker–Smale flocking particles described by a Vlasov-type equation and incompressible Navier–Stokes equations. The interaction between the particles and fluid is governed by a drag force. In this study, we show the global existence of weak solutions for this system. We also prove the global existence and uniqueness of strong solutions. In contrast with the results of Bae et al. (2014) on the CS–NS equations considered in three dimensions, we do not require any smallness assumption on the initial data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have