Abstract
We consider weak solutions to a two-dimensional simplified Ericksen-Leslie system of compressible flow of nematic liquid crystals. An initial-boundary value problem is first studied in a bounded domain. By developing new techniques and estimates to overcome the difficulties induced by the supercritical nonlinearity in the equations of angular momentum on the direction field, and adapting the standard three-level approximation scheme and the weak convergence arguments for the compressible Navier-Stokes equations, we establish the global existence of weak solutions under a restriction imposed on the initial energy including the case of small initial energy. Then the Cauchy problem with large initial data is investigated, and we prove the global existence of large weak solutions by using the domain expansion technique and the rigidity theorem, provided that the second component of initial data of the direction field satisfies some geometric angle condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.