Abstract

This paper formulates a mathematical framework to describe the dynamics of SIS-type infectious diseases with resource constraints. We first define the basic reproduction number that determines disease prevalence and analyze the existence and local stability of the equilibria. Subsequently, we analyze the global dynamics of the model, excluding periodic solutions and heteroclinic orbits, using the compound matrix approach. The analysis implies that the model can undergo forward and backward bifurcations depending on critical parameters. In the former scenario, the disease persists when the basic reproduction number under resource constraints exceeds one. In the latter scenario, the backward bifurcation creates bistability dynamics in which the disease may persist or become extinct depending on the initial level of infected individuals and the resource abundance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.