Abstract
The transmission dynamics of COVID-19 is investigated through the prism of the Atangana-Baleanu fractional model with acquired immunity. Harmonic incidence mean-type aims to drive exposed and infected populations towards extinction in a finite time frame. The reproduction number is calculated based on the next-generation matrix. A disease-free equilibrium point can be achieved globally using the Castillo-Chavez approach. Using the additive compound matrix approach, the global stability of endemic equilibrium can be demonstrated. Utilizing Pontryagin's maximum principle, we introduce three control variables to obtain the optimal control strategies. Laplace transform allows simulating the fractional-order derivatives analytically. Analysis of the graphical results led to a better understanding of the transmission dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.