Abstract

Results obtained on the Madison Symmetric Torus (MST) reversed-field pinch [Fusion Technol. 19, 131 (1991)] after installation of the design poloidal field winding are presented. Values of βθe0≡2μ0ne0Te0/B2θ(a)∼12% are achieved in low-current (I=220 kA) operation; here, ne0 and Te0 are central electron density and temperature, and Bθ(a) is the poloidal magnetic field at the plasma edge. An observed decrease in βθe0 with increasing plasma current may be due to inadequate fueling, enhanced wall interaction, and the growth of a radial field error at the vertical cut in the shell at high current. Energy confinement time varies little with plasma current, lying in the range of 0.5–1.0 msec. Strong discrete dynamo activity is present, characterized by the coupling of m=1, n=5–7 modes leading to an m=0, n=0 crash (m and n are poloidal and toroidal mode numbers). The m=0 crash generates toroidal flux and produces a small (2.5%) increase in plasma current.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call