Abstract

Innovative charge-exchange recombination spectroscopy (CHERS), motional Stark effect (MSE), and Rutherford scattering diagnostics are now in operation on the Madison Symmetric Torus (MST) reversed-field pinch (RFP). The CHERS diagnostic measures impurity ion flow and temperature, localized to 2cm with high time resolution (∼100kHz). A spectral MSE diagnostic has been in use for five years, measuring ∣B∣ down to 0.2T with high precision (∼2%) and good time resolution (10kHz). The Rutherford scattering diagnostic has demonstrated the robustness of this technique for reliable measurement of majority (D) ion temperature, also with high time resolution. MST is a large RFP (R=1.5m, a=0.52m) operated at moderate current (Ip⩽600kA), with ne typically (1–2)×1019m−3 and Te, Ti⩽2keV. Two compact and reliable diagnostic neutral beams are installed on MST. These beams are short pulse, intense, monoenergetic, and low divergence. The first, a neutral H beam, is used in combination with ultraviolet and visible spectroscopy to make the CHERS and MSE measurements. For CHERS, the CVI line at 343.4nm is collected by a custom high-throughput double grating spectrometer which simultaneously records both charge-exchange and background emissions. The spectrum is analyzed using a sophisticated model derived from the Atomic Database and Analysis Structure (ADAS) package. The MSE system records the entire Hα Stark spectrum; ∣B∣ is derived from the measured splitting of the π+ and π− manifolds. Measurement of ∣B∣ is critical to accurate equilibrium reconstruction in the RFP. The second diagnostic beam is a 20keV neutral He beam and is used for the Rutherford scattering measurements. A pair of neutral particle analyzers is used to record the energy spectrum of the small-angle Rutherford scattered He atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.