Abstract

In the implementation of deep reinforcement learning (DRL), action persistence strategies are often adopted so agents maintain their actions for a fixed or variable number of steps. The choice of the persistent duration for agent actions usually has notable effects on the performance of reinforcement learning algorithms. Aiming at the research gap of global dynamic optimal action persistence and its application in multi-agent systems, we propose a novel framework: global dynamic action persistence (GLDAP), which achieves global action persistence adaptation for deep reinforcement learning. We introduce a closed-loop method that is used to learn the estimated value and the corresponding policy of each candidate action persistence. Our experiment shows that GLDAP achieves an average of 2.5%~90.7% performance improvement and 3~20 times higher sampling efficiency over several baselines across various single-agent and multi-agent domains. We also validate the ability of GLDAP to determine the optimal action persistence through multiple experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.