Abstract
Ischemia/reperfusion (I/R) injury can increase the anomalous permeability of the blood-brain barrier and the risk of hemorrhagic conversion. Ginkgolide B (Gin B) has been recognized for its neuroprotective properties in stroke treatment. This study aimed to analyze the association of Gin B with GPX4 and FSP1 in cerebral I/R injury treatment. HT22 cells were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) and treated with a series of Gin B (10, 20, 40 μM) for 24 h. It found that the Gin B treatment declined the OGD/R-induced cellular ROS and lipid ROS with increasing concentrations. Moreover, the Gin B treatment improved the OGD/R-induced ferroptotic cell death by activating the GPX4-GSH and FSP1-CoQ10-NADH pathways with increasing concentrations. Molecular docking showed there is a good binding activity of Gin B to GPX4 (score = -6.4 kcal/mol) and FSP1 (score = -6.7 kcal/mol), and the microscale thermophoresis (MST) assay confirmed that Gin B can directly bind to GPX4 and FSP1. In vivo, rats were induced by middle cerebral artery occlusion (MCAO)/R and treated with 20 mg/kg of Gin B to analyze its effects on the GPX4-GSH and FSP1-CoQ10-NADH pathways. The GPX4 inhibitor (RSL3) and the FSP1 inhibitor (iFSP1) were used to confirm the mechanism of Gin B in the MCAO/R-treated rats. It showed that the Gin B treatment alleviated the MACO/R-induced brain injury by activating the GPX4-GSH and FSP1-CoQ10-NADH pathways. This study showed that Gin B improved cerebral I/R-induced ferroptotic cell death by activating the GPX4-GSH and FSP1-CoQ10-NADH pathways, providing a new mechanism of Gin B for cerebral I/R treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have