Abstract

A non-magnetic layer can inject spin-polarized currents into an adjacent ferromagnetic layer via spin vorticity coupling (SVC), inducing spin wave resonance (SWR). In this work, we present the theoretical model of SWR generated by shear-horizontal surface acoustic wave (SH-SAW) via SVC, which contains distinct vorticities from well-studied Rayleigh SAW. Both Rayleigh- and SH-SAW delay lines have been designed and fabricated with a Ni81Fe19/Cu bilayer integrated on ST-cut quartz. Given the same wavelength, the measured power absorption of SH-SAW is four orders of magnitudes higher than that of the Rayleigh SAW. In addition, a high-order frequency dependence of the SWR is observed in the SH-SAW, indicating SVC can be strong enough to compare with magnetoelastic coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.