Abstract

Spin Seebeck effect (SSE) is a key factor in the spin caloritronics field, and extensive studies have been performed for potential spin thermoelectric modulator device applications. However, the performance of spin current generation was not high enough, and this is due to the weak yield of the SSE. Despite the many studies for the SSE in bulk materials, no reports are available yet in the pure two-dimensional (2D) ferromagnetic material. Hereby, we investigated the SSE of two-dimensional ferromagnetic CrI3 using the Boltzmann transport approach allowing diffusive scattering. We obtained a giant effective spin Seebeck effect of 1450 μV K−1, and this value is at least 4–5 times larger than previously reported values in bulk systems. Therefore, our finding may suggest that 2D CrI3 can be a potential material to open another perspective for 2D materials in the spin caloritronics field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.