Abstract

Strong second-harmonic generation (SHG) and a wide band gap are two crucial but often conflicting parameters that must be optimized for practical nonlinear optical (NLO) materials. We report herein the first d0-transition-metal (TM) tellurite with half of the d0-TM-octahedra partially fluorinated, namely, quinary RbTeMo2O8F, which exhibits giant SHG responses (27 times that of KH2PO4 (KDP) and 2.2 times that of KTiOPO4 (KTP) with 1064 and 2100 nm laser radiation, respectively), the largest SHG values among all reported metal tellurites. RbTeMo2O8F also possesses a large band gap (3.63 eV), a wide optical transparency window (0.34-5.40 μm), and a significant birefringence (Δn = 0.263 at 546 nm). Theoretical calculations and crystal structure analysis demonstrate that the outstanding SHG responses can be definitively attributed to the uniform alignment of the polarized [MoO5F]/[MoO6] octahedra and the seesaw-like [TeO4], and the consequent favorable summative polarization of the three distinct SHG-active polyhedra, both induced by partial fluorine substitution on the [MoO6] octahedra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call