Abstract

Superstructures assembled by subnanometer polyoxometalate (POM) clusters are interesting for their attractive structures and excellent properties. However, the complex interactions between clusters and cations make it challenging to control the assembly of POM clusters at the subnanometer scale. Here, 20 cluster-assembled superstructures built by two types of MP2W17O61 (M = La-Lu) clusters are successfully synthesized. The precise structures and configurations of the subnanostructures, including nanowires, tetragonal nanosheets, and rectangular nanosheets, are characterized and presented. Molecular dynamics (MD) simulations reveal that the difference in interactions of POM clusters and cations leads to the formation of distinct superstructures. Two mechanisms of superstructure formation are proposed. Furthermore, the EuP2W17 nanosheet behaves with a high Faradaic efficiency of 90.2% and selectivity of 87.3% for glycolic acid in the electrocatalytic ethylene glycol oxidation reaction, which is much higher than that of isolated cluster components. This work connects the cluster topologies and cluster-cation pairs to the superstructures of cluster assemblies, providing general guidelines for the supramolecular self-assembly of POM clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.