Abstract

Mid-infrared (MIR, 2-20 μm) second-order nonlinear optical (NLO) materials with outstanding performances are of great importance in laser science and technology. However, the enormous challenge to design and synthesize an excellent MIR NLO material lies in achieving simultaneously a strong second harmonic generation (SHG) response [dij >0.6 × AgGaS2 (AGS)] and wide band gap (Eg >3.5 eV). Herein three new MIR NLO materials, AZn4 Ga5 S12 (A=K, Rb, Cs) are reported, which crystallize in the KCd4 Ga5 S12 -type structure and adopt a 3D diamond-like framework (DLF) consisting of MS4 (M=Zn/Ga) tetrahedra; achieving the desired balance with strong powder SHG response (1.2-1.4 × AGS) and wide band gap (Eg ≈3.65 eV). Moreover, they also show large laser induced damage thresholds (LIDTs, 36 × AGS), a wide range of optical transparency (0.4-25 μm) and ultrahigh thermal stability (up to 1400 K). Upon analyzing the structure-property relationship of AXII4 XIII5 Q12 family, these 3D DLF structures can be used as a highly versatile and tunable platform for designing excellent MIR NLO materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.