Abstract

AbstractMaterials with an abrupt volume collapse of more than 20 % during a pressure‐induced phase transition are rarely reported. In such an intriguing phenomenon, the lattice may be coupled with dramatic changes of orbital and/or the spin‐state of the transition metal. A combined in situ crystallography and electron spin‐state study to probe the mechanism of the pressure‐driven lattice collapse in MnS and MnSe is presented. Both materials exhibit a rocksalt‐to‐MnP phase transition under compression with ca. 22 % unit‐cell volume changes, which was found to be coupled with the Mn2+(d5) spin‐state transition from S=5/2 to S=1/2 and the formation of Mn−Mn intermetallic bonds as supported by the metallic transport behavior of their high‐pressure phases. Our results reveal the mutual relationship between pressure‐driven lattice collapse and the orbital/spin‐state of Mn2+ in manganese chalcogenides and also provide deeper insights toward the exploration of new metastable phases with exceptional functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.