Abstract

2D transition metal dichalcogenides have attracted much attention in the field of spintronics due to their rich spin-dependent properties. The promise of highly compact and low-energy-consumption spin-orbit torque (SOT) devices motivates the search for structures and materials that can satisfy the requirements of giant perpendicular magnetic anisotropy (PMA) and large SOT simultaneously in SOT-based magnetic memory. Here, it is demonstrated that PMA and SOT in a heavy metal/transition metal ferromagnet structure, Pt/[Co/Ni]2 , can be greatly enhanced by introducing a molybdenum disulfide (MoS2 ) underlayer. According to first-principles calculation and X-ray absorption spectroscopy (XAS), the enhancement of the PMA is ascribed to the modification of the orbital hybridization at the interface of Pt/Co due to MoS2 . The enhancement of SOT by the role played by MoS2 is explained, which is strongly supported by the identical behavior of SOT and PMA as a function of Pt thickness. This work provides new possibilities to integrate 2D materials into promising spintronics devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call