Abstract

We discuss the observation of large resonant features, superimposed upon the quantum Hall plateaux of gated GaAs/AlGaAs quantum dots. The resonances correspond to a magnetically induced increase in the edge state backscattering, and under certain conditions can imply a complete reflection of the applied current. We demonstrate that the resonances are correlated to the depopulation of bulk Landau levels, and suggest they result from an increase in backscatterlng via confined Landau levels, as the latter depopulate in a magnetic field. The resonances are therefore analogous to the Shubnikov-de Haas oscillations, observed in two dimensional electron gas systems, and their temperature dependence is found to take the same functional form. We argue that the resonances are an intrinsic feature of edge state transport in quantum dots, since they result from scattering via Landau levels, controllably confined within the dot, and discuss our results in relation to recent theoretical and experimental studies, of edge state transport in small wires and dots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call