Abstract
High mobility channel materials could replace strained Si to enhance speed performance and/or reduce power consumption in future transistors. Ge has the highest hole mobility among common elemental and compound semiconductors, and an electron mobility that is two times larger than that of Si. Ge is thus a promising channel material for future CMOS (Fig. 1). Key challenges include cost-effective integration of Ge on Si in a manufacturable process, formation of high-quality gate stack on Ge for n- and p-FETs at aggressively scaled EOTs that deliver high channel mobilities, and leakage issues related to its small bandgap. In this paper, we discuss recent research progress in advancing Ge-based transistor technologies. Integration of Ge on Si substrate to enable fabrication of high performance devices and formation of high-quality gate stack for Ge FETs (particularly for n-FETs) will be discussed. We also explore opportunities to boost the mobility of Ge, e.g. by incorporating Sn in Ge to form Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Sn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> . Furthermore, by raising the Sn composition, the band gap E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</sub> of Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Sn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> becomes smaller and transits from indirect to direct, making Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Sn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> a promising material for tunneling transistors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.