Abstract
In this paper, a scheme of the germanene nanoribbon tunneling field effect transistor (GeNR-TFET) is proposed. The characteristics and analog performance of the device were theoretically investigated by exploiting the electrical properties of a germanene nanoribbon and applying the doping concentration in the source and drain regions at 300 K and 4 K temperatures. The device parameters were obtained using a non-equilibrium Green’s function (NEGF) method within the tight binding (TB) Hamiltonian. The TB Hamiltonian was extracted from the density functional theory (DFT) through the Wannier function. We find that by increasing the doping concentration the Ion current increases which leads to an improvement of the Ion/Ioff ratio to 105. Moreover, decreasing the temperature from 300 K to 4 K causes the Ioff to become ten times smaller. We find that the device output characteristic displays a negative differential conductance with a good peak-to-valley ratio which is improved by increasing the doping concentration. The analog performance of the device is also investigated in the subthreshold regime of operation by varying the doping concentration. It is observed that by increasing the device doping concentration, the analog figures of merit can be improved.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have