Abstract
Geotechnical properties from a series of deep-sea sites in the North Atlantic and North Pacific oceans are examined to evaluate overall trends and to compare with similar fine-grained soils found on land. The study areas encompass a range of sedimentary environments dominated by combinations of turbidite and pelagic deposits. Carbonate content in excess of 20% is seen to result in a decrease in liquid limit and compressibility. Vertical profiles of geotechnical properties in the North Pacific show broader changes in down-core geotechnical properties compared to the North Atlantic and reflect the effects of long-term climatic changes and seafloor spreading. Sediments in the North Atlantic indicate significant differences depending on location, which is attributed to variability in turbidite deposition, water depth, distance from sediment sources, and the effects of bottom currents. Compared to equivalent fine-grained soils on land, deep-sea sediments are generally softer, more compressible and have higher friction angles at comparable Atterberg limits. Deeper and older sediments in the North Pacific are characterized by unusually large plastic limits, which are attributed to the presence of volcanic fractions. Empirical relationships for compression index and friction angle are discussed for sediments from both oceans.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have