Abstract

Repeated high-precision gravity measurements made near the summit of Kilauea volcano, Hawaii, have revealed systematic temporal variations in the gravity field associated with a major deflation of the volcano that followed the 29 November, 1975, earthquake and eruption. Changes in the gravity field with respect to a stable reference station on the south flank of neighboring Mauna Loa volcano were measured at 18 sites in the summit region of Kilauea and at 4 sites far removed from its summit. The original survey, conducted 10–23 November, 1975, was repeated during a two-week period after the earthquake. The results indicate that sometime between the first survey and the latter part of the second survey the gravity field at sites near the summit increased with respect to that at sites far removed from the summit. The pattern of gravity increase is essentially radially symmetrical, with a half-width slightly less than 3 km, about the point of maximum change 1.5 km southeast of Halemaumau pit crater. Gravity changes at sites near the summit correlate closely with elevation decreases that occurred sometime between leveling surveys conducted in late September 1975 and early January 1976. The systematic relation between gravity and elevation change (−1.71 ± 0.05 ( s. e.) μgal/ cm) shows that deflation was accompanied by a loss of mass from beneath the summit region. Mass balance calculations indicate that for all reasonable magma densities, the volume of magma withdrawn from beneath the summit region exceeded the volume of summit collapse. Analysis suggests that magma drained from at least two distinct areas south of Kilauea caldera that coincide roughly with two reservoir areas active during inflation before the 1967–1968 Kilauea eruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.